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Abstract

Let Sn denote the symmetric group of all permutations π = π1π2 · · ·πn of {1, 2, . . . , n}.
An index i is a peak of π if πi−1 < πi > πi+1, and let P (π) be the set of peaks of π.
Given any set S of positive integers we define P(S;n) = {π ∈ Sn : P (π) = S}. It has
been shown that for all fixed subsets of positive integers S and all sufficiently large n
we have |P(S;n)| = p(n)2n−|S|−1 for some polynomial p(n) depending on S, but we go
on to show that p(i) = 0 for all i ∈ S and also that 0, 1, . . . , ik are roots of p(n) for any
ir ∈ S if ir+1−ir is odd. We also probabilistically enumerate |P(S;n)| using alternating
subsequences and explicitly compute p(n) when S = {m,m + 3, . . . ,m + 3k}. Lastly,
we prove that the coefficients of the expansion of p(n) in a binomial coefficient basis
are nonnegative for various S and discuss conjectures regarding the complex roots of
p(n).

1 Introduction

Let P be the positive integers and [n] = {1, 2, . . . , n} for n ∈ P. Also, let Sn be the symmetric
group of all permutations π = π1π2 · · · πn of [n]. An index i of π is a peak if πi−1 < πi > πi+1,
and the peak set of π is defined as

P (π) = {i : i is a peak of π}.

We are interested in counting the permutations of with a given peak set, so let us define

P(S;n) = {π ∈ Sn : P (π) = S}.

Theorem 1.1. If S = {i1 < · · · < is} is admissible, then

|P(S;n)| = p(n)2n−|S|−1

where p(n) = p(S;n) is a polynomial depending on S such that p(n) is an integer for all
integral n. In addition, deg p(n) = is − 1 (when S = ∅ we have deg p(n) = 0).

It is important to note that if S is inadmissible, then p(S;n) = 0.
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Corollary 1.2. If S 6= ∅ is admissible and m = maxS, then

p(S;n) = p1(m− 1)

(
n

m− 1

)
− 2p1(n)− p2(n)

where S1 = S − {m}, S2 = S1 ∪ {m− 1}, and pi = p(Si, n) for i = 1, 2.

We also know that maxS is a root of p(n) from Permutations with Given Peak Set, which
is important for many of the proceeding theorems.

Theorem 1.3. If S = {m} is admissible, then

p(S;n) =

(
n− 1

m− 1

)
− 1.

We are investigating permutations with a given peak set for various reasons. An appli-
cation of this permutation statistic is an insight into the randomness of medical data.

This paper has the following structure: An approach to the positivity conjecture by
bounding the roots of the peak polynomial, various results regarding the roots of the peak
set polynomial, various new recurrence relations for specific peak polynomials, closed form
and factored polynomials for special peak sets, a probabilistic method of enumerating peak
sets, and our conjectures.

2 An approach to the positivity conjecture

Billey, et. al. proposed the following conjecture in [1].

Conjecture 2.1. (Positivity Conjecture) If S is admissible, and p(S;n) is expanded in the
polynomial basis

(
n−m
k

)
as

p(S;n) =
m−1∑
k=0

cSk

(
n−m
k

)
where m = maxS, then all cSk are nonnegative integers.

The fact that all cSk are integers was proved in [1], leaving only the fact that the cSk are
nonnegative to be proved.

We now state a conjecture which, if true, has the above conjecture as a corollary.

Conjecture 2.2. If S is admissible and m = maxS, p(S;n) has no zero with real part
greater than m.

We now prove that Conjecture 2.1 is a consequence of Conjecture 2.2. We will write p(x)
for p(S;n), for convenience.

Lemma 2.3. If a polynomial of degree m−1 has all of its derivatives p′(x), p′′(x), . . . p(m−1)(x)
nonnegative for all x > m, then all of its finite differences ∆p(m),∆2p(m), . . .∆m−1p(m) are
nonnegative.
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Proof. We use a specific case of Formula (44) of [2], yielding that there exists ξ ≥ m such
that

k!∆k−1p(m) = p(k)(ξ)

Since k! is nonnegative and by assumption p(k)(ξ) is nonnegative for 1 ≤ k ≤ m − 1, and
p(m)(x) is identically zero, ∆k−1p(m) must be nonnegative for all k such that 0 ≤ k ≤
m− 1.

Lemma 2.4. If none of p, p′, p′′, . . ., p(m−1) has a real root greater than m, then p(x), p′(x),
. . ., p(m−1)(x) are all nonnegative for all x > m.

Proof. Since there is always at least one permutation with an admissible peak set S, we
know that p(S;n) is positive for n > m. Since p is a nonzero polynomial, it must be either
eventually positive of eventually negative. Since p(S;n) is positive for arbitrarily large values
of n, we know that p is eventually positive. Thus the leading coefficient of p must be positive.
This implies that all of the derivatives of p are also eventually positive. If any derivative
p(k)(x) was negative for some x0 > m, then by the Intermediate Value Theorem, p(k) would
have a zero greater than x0, and thus greater than m, which proves the contrapositive of the
statement of this lemma.

Lemma 2.5. If p has no zeros with real part > m, then p′, p′′, . . ., p(m−1) have no zeros
with real part > m, and thus no real zeros > m.

Proof. We use the Gauss-Lucas theorem, which states that all the zeros of a function’s
derivatives all lie in the convex hull of the function’s zeros in the complex plane. Thus if all
the zeros of p lie in the half-plane Re(z) ≤ m, their convex hull will also lie in the half-plane
Re(z) ≤ m, so the zeros of all the derivatives of p will lie in the half-plane Re(z) ≤ m, so all
the zeros of all the derivatives of p will have real part ≤ m, and thus no real zeros > m.

Theorem 2.6. If S is admissible and m = maxS, and if p(S;n) has no zero with real part
greater than m, then all cSk are nonnegative.

Proof. This theorem is now a straightforward consequence of Lemmas 2.3, 2.4, and 2.5.

3 Roots of the peak set polynomials

*Prove that all indices are roots.* This sentence serves as a transition into the investigation
of the roots of these peak polynomials. The roots are of interest for two reasons. Firstly, it
appears that any index in a peak set is a root of its associated peak polynomial. Secondly,
if we can prove that the greatest index in a peak set is the root with the greatest real part
of the associated peak polynomial, then we can prove the positivity conjecture by analyzing
the derivatives of the peak polynomial rather than its finite differences.

Also, we need make a distinction between algebraic roots and a zero from inadmissibility.
For example, p(2, 5; 4) = −2, but |P(2, 5; 4)| = 0 because it is not admissible.

Theorem 3.1. If S = {i1 < · · · < is}, then all i ∈ S are roots of p(S;n).
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Proof. We will induct on is and use Corollary 2 and Theorem 3. In the basis case, S = {2}
because it is the smallest admissible peak set, and by Theorem 3 we know that

p(2; 2) =

(
2− 1

2− 1

)
− 1 = 0.

For the inductive hypothesis, assume that all i ∈ S are roots of p(S;n) for all peak sets S
with maximum element < is. By Corollary 2,

p(S;n) = p1(m− 1)

(
n

m− 1

)
− 2p1(n)− p2(n).

We know that is is a root of p(S;n) by the extension of Theorem 1 given in Permutations
with Given Peak Set by Billey, Burdzy, and Sagan. Let i < is be in S. We then have

p(S; i) = p1(m− 1)

(
i

m− 1

)
− 2p1(i)− p2(i).

By the inductive hypothesis, p1(i) = p2(i) = 0. If i < m − 1,
(

i
m−1

)
= 0, and if i = m − 1,

S1 is inadmissible, so p1(m− 1)
(

i
m−1

)
= 0. Thus p(S; i) = 0 for all i ∈ S.

Lemma 3.2. Let S = {i1 < i2 < · · · < is−1 < is}. If is− is−1 is odd, 0, 1, 2, . . . is−1 are roots
of p(S;n).

Proof. By applying the recursive formula of Corollary 1.2 repeatedly until S2 is inadmissble,
we obtain the following formula:

p(S;n) = −2p1(n)χ(is − is−1 even) +

is−is−1−2∑
i=0

(−1)ip1(is − i− 1)

(
n

is − i− 1

)
If is − is−1 is odd, this simplifies to

p(S;n) =

is−is−1−2∑
i=0

(−1)ip1(is − i− 1)

(
n

is − i− 1

)

=

is−is−1−2∑
i=0

(−1)ip1(is − i− 1)
1

(is − i− 1)!

is−i−2∏
j=0

(n− j)

=

is−1−1∏
j=0

(n− j)
is−is−1−2∑

i=0

(−1)ip1(is − i− 1)
1

(is − i− 1)!

is−i−2∏
j=l

(n− j)

Thus 0, 1, . . . is−1 − 1 are all roots of p(S;n), and since is−1 ∈ S, is−1 is a root of p(S;n)
by Theorem 3.1, so 0, 1, . . . is−1 are all roots of p(S;n).
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Lemma 3.3. Let S = {i1 < i2 < · · · < is}, and let S ′ = {i1 < i2 < · · · < is < is+1}. If a
nonnegative integer a ≤ is−1 is a root of p(S;n), then a is a root of p(S ′, n).

Proof. Using the formula obtained in Lemma 3.2:

p(S ′;n) = −2p1(n)χ(is − is−1 even) +

is−is−1−2∑
i=0

(−1)ip1(is − i− 1)

(
n

is − i− 1

)
We showed in Lemma 3.2 that the sum in this formula is zero for all nonnegative integers
n ≤ is−1. In particular, it is zero for n = a. Since a is a root of p1, −2p1(n)χ(is − is−1
even) = 0, so p(S ′, a) = 0, so a is also a root of S ′.

Theorem 3.4. If S = {i1 < i2 < · · · < is} is admissible, and ij+1 − ij is odd for any j such
that 1 ≤ j ≤ s, then 0, 1, 2, . . . ij are roots of S.

Proof. We can now proceed by induction. Let S1 = {i1 < · · · < ij+1}. By Lemma 3.2,
0, 1, . . . ij are roots of p(S1;n). We now assume that 0, 1, . . . ij are roots of p(Sk;n). By
Lemma 3.3, 0, 1, . . . ij are thus roots of p(Sk+1;n). So by induction 0, 1, . . . ij are roots of
p(S;n).

Theorem 3.5. Let SL = {i1 < . . . < il}, SR = {j1 = 2 < j2 < . . . < jr}, and construct
S = {i1 < . . . < il < j1 + il + 1 < . . . < jr + il + 1}. Then

2p(S;n) =

(
n

il + 1

)
p(SL; il + 1)p(SR, n− il − 1)

Proof. Select il + 1 of the n elements. There are
(

n
il+1

)
ways to do this. Arrange them so

that they have peak set SL. There are P (SL; il + 1) ways to do this. Arrange the remaining
n − (il + 1) elements so that they have peak set SR. There are P (SR;n − il − 1) ways to
do this. Now concatenate the two permutations to form a permutation on n elements which
has peak set S. This construction yields all permutations with peak set S, and since il and
j1 + il + 1 are peaks, il + 1 and j1 + il are not, so this construction only gives permutations
with peak set S. Thus we have

P (S;n) =

(
n

il + 1

)
P (SL; il + 1)P (SR, n− il − 1)

In terms of the peak polynomials, this is

2n−s−1p(S;n) =

(
n

il + 1

)
2il+1−l−1p(SL; il + 1)2n−il−1−r−1p(SR;n− il − 1)

Since s = |S| = l + r, this simplifies to

2p(S;n) =

(
n

il + 1

)
p(SL; il + 1)p(SR, n− il − 1)

5



Corollary 3.6. If S = {i1 < . . . < is}, and there are two consecutive indices ij and ij+1

such that ij+1 − ij = 3, and if we define S + 1 = {i+ 1 : i ∈ S}, we have

p(S + 1;n) = Cnp(S;n− 1)

where C = C(S) does not depend on n.

Proof. If we let il = ij and jk = ij+k for 1 ≤ k ≤ s− j, we can divide S into SL and SR, and
divide S + 1 into SL + 1 and SR. We then apply the theorem to obtain:

p(S + 1;n) =
1

2

(
n

il + 2

)
p(SL + 1; il + 2)p(SR;n− il − 2)

whereas

p(S;n− 1) =
1

2

(
n− 1

il + 1

)
p(SL; il + 1)p(SR;n− il − 2)

⇒ p(S + 1;n) =
1

il + 2

p(SL + 1; il + 2)

p(SL; il + 1)
np(S;n− 1)

= Cnp(S;n− 1)

where C = 1
il+2

p(SL+1;il+2)
p(SL;il+1)

depends only on SL, not on n.

Corollary 3.7. Let SL = {i1 < . . . < il} and SR = {j1 = 2 < . . . jr}. If SR has no roots
with real part greater than jr, then if we construct S = {i+ 1 < . . . < il < j1 + (il + 3− j1) <
j2 + (il + 3 − j1) < . . . < jb + (il + 3 − j1)}, p(S;n) has no real roots with real part greater
than max(S) = jr + il + 3− j1 = jr + il + 1.

Proof.
(

n
il+1

)
has zeroes at 0, 1, . . . il and p(SL; il + 1) > 0, so

p(S;n) will have a zero with real part greater than jr + il + 1
⇔ p(SR;n− il − 1) has a zero with real part greater than jr + il + 1
⇔ p(SR;n) has a zero with real part greater than jr.

4 Additional recursions

While studying the roots of peak set polynomials, we have constructed new recurrence re-
lations for specific peak sets, e.g. ending in an odd gap. Most of the recurrences factor
out integer roots with the rest of the equation defined by some recurrence. We also gain
some insight on how the peak polynomial grows from n to n + 1 by looking at the ratio of
consecutive terms, which eliminates the unknown coefficient.

Theorem 4.1. If S is admissible and n > maxS, then

2p(S;n+ 1) = (n+ 1)p(S;n)− p(S ∪ {n};n+ 1).
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Proof. Select n of the n+1 elements and arrange them such that they have peak set S. Add
the leftover element to the end of this sequence. The resulting sequence will have peak set
either S or S ∪ {n}, and any sequence with peak set S or S ∪ {n} can be constructed this
way. There are

(
n+1
n

)
= n+ 1 ways to choose n of the n+ 1 elements, and |P(S;n)| ways to

arrange them so that they have peak set S, so we have

|P(S;n+ 1)|+ |P(S ∪ {n};n+ 1)| = (n+ 1) |P(S;n)| .

Using Theorem 1.1, we see that

2(n+1)−s−1p(S;n+ 1) + 2(n+1)−(s+1)−1p(S ∪ {n};n+ 1) = (n+ 1)2n−s−1p(S;n),

where s = |S|. Dividing by 2n−s−1 yields

2p(S;n+ 1) + p(S ∪ {n};n+ 1) = (n+ 1)p(S;n),

so
2p(S;n+ 1) = (n+ 1)p(S;n)− p(S ∪ {n};n+ 1).

It should be noted that this formula can also be obtained by plugging p(S∪{n+1};n+1)
into Corollary 1.2 and noting that S∪{n+1} is inadmissible, but this proof is still necessary
because the proof of that formula assumed we were using an admissible set.

Corollary 4.2. If S = {i1 < i2 < · · · < is} is admissible, then

p(S; is + 2) =
is + 2

2
p(S; is + 1).

Proof. This follows directly from Theorem 4.1 by plugging is + 1 in for n and observing that
S ∪ {is + 1} is inadmissible.

Corollary 4.3. If S = {i1 < i2 < · · · < is} is admissible, then

|P(S; is + 2)| = (is + 2) |P(S; is + 1)| .

Proof. This is a direct consequence of Theorem 1.1 and Corollary 4.2.

From a combinatorial perspective, Corollary 4.3 makes complete sense because is is a
peak, which implies that is + 1 is not peak. Furthermore, is + 2 cannot be a peak because
we are counting permutations in Sis+2. There are is + 2 ways to choose is + 1 symbols
from is + 2, and there are |P(S; is + 1)| ways to arrange them into S. The final symbol is
appended to the permutation and will never be a peak.

Now we will look at p(S;n) when S has a certain kind of final gap. More specifically, we
are interested in peak sets whose roots are all integral, which seems to only happen when
S = {i1 < i2 < · · · < is < is + 3} and S = {i1 < i2 < · · · < is < is + 3 < is + 5}.
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Lemma 4.4. If S = {i1 < · · · < is < is + 3} is admissible, then

p(S;n) = p1(is + 2)

(
n

is + 2

)
− p1(is + 1)

(
n

is + 1

)
.

Proof. We use Corollary 1.2 twice and observe that

p(S;n) = p1(is + 2)

(
n

is + 2

)
− 2p1(n)− p2(n)

= p1(is + 2)

(
n

is + 2

)
− 2p1(n)− (p1(is + 1)

(
n

is + 1

)
− 2p1(n)− 0)

= p1(is + 2)

(
n

is + 2

)
− p1(is + 1)

(
n

is + 1

)
.

Notice that the rightmost polynomial terminates because {i1 < · · · < is < is + 1} is inad-
missible.

Theorem 4.5. If S = {i1 < · · · < is < is + k} for some odd k ≥ 3, then

p(S;n) =

∏is
i=0(n− i)
(is + 1)!

k−1∑
i=1

(−1)kp1(is + i)

∏i−1
j=1(n− (is + j))∏i

j=2(is + j)
.

Proof. We will induct on k and use Corollary 1.2 and Lemma 4.4. In the basis case k = 3,
and by Lemma 4.4 we see that

p(S;n) = p1(is + 2)

(
n

is + 2

)
− p1(is + 1)

(
n

is + 1

)
=

∏is
i=0(n− i)
(is + 1)!

[
p1(is + 2)(n− (is + 1))

is + 2
− p1(is + 1)

]
.

In the inductive step we use the recurrence formula to produce a term known by the inductive
hypothesis.

p(S;n) = p1(is + k − 1)

(
n

is + k − 1

)
− p1(is + k − 2)

(
n

is + k − 2

)
+ p(S1 ∪ {is + k − 2};n)

= p1(is + k − 1)

(
n

is + k − 1

)
− p1(is + k − 2)

(
n

is + k − 2

)
+

∏is
i=0(n− i)
(is + 1)!

k−3∑
i=1

(−1)kp1(is + i)

∏i−1
j=1(n− (is + j))∏i

j=2(is + j)

=

∏is
i=0(n− i)
(is + 1)!

k−1∑
i=1

(−1)kp1(is + i)

∏i−1
j=1(n− (is + j))∏i

j=2(is + j)
.
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The following two corollaries illustrate the factorization of p(S;n) when S = {i1 < i2 <
· · · < is < is + 3} or S = {i1 < i2 < · · · < is < is + 3 < is + 5}. All of the roots of these
polynomials are nonnegative integers, and the only the coefficient is defined recursively.

Corollary 4.6. If S = {i1 < · · · < is < is + 3}, then

p(S;n) =
p1(is + 1)

2(is + 1)!
(n− (is + 3))

is∏
i=0

(n− i).

Proof. We see that

p(S;n) =

∏is
i=0(n− i)
(is + 1)!

[
p1(is + 2)(n− (is + 1))

is + 2
− p1(is + 1)

]
using Theorem 4.5, but we also know that is is a root of p(S;n). It follows that

p(S;n) =

∏is
i=0(n− i)
(is + 1)!

[
p1(is + 2)(n− (is + 1))− p1(is + 1)(is + 2)

is + 2

]

=

∏is
i=0(n− i)
(is + 1)!

[
p1(is + 2)

is + 2

(
n−

(
is + 1 +

p1(is + 1)(is + 2)

p1(is + 2)

))]
.

Because there is only one remaining root,

is + 3 = is + 1 +
p1(is + 1)(is + 2)

p1(is + 2)
,

so it follows that

p(S;n) =
p1(is + 2)

(is + 2)!
(n− (is + 3))

is∏
i=0

(n− i)

=
p1(is + 1)

2(is + 1)!
(n− (is + 3))

is∏
i=0

(n− i)

by Corollary 4.2.

It should be noted that is + 3 = is + 1 + p1(is+1)(is+2)
p1(is+2)

also implies Corollary 4.2. Recall

that p1(n) = p({i1 < · · · < is};n). So for any S = {i1 < · · · < is}, we can simply insert
is + 3 into S and use the previous equation. Also, n = is + 1 is the first value where p(S;n)
is nontrivial and makes combinatorial sense.

Corollary 4.7. If S = {i1 < · · · < is < is + 3 < is + 5}, then

p(S;n) =
p(S − {is + 3, is + 5}; is + 1)

3(is + 1)!
(n− (is + 3))(n− (is + 5))(n− (is − 2))

is∏
i=0

(n− i).
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Proof. This is a direct consequence of Theorem 1.2 and Corollary 4.6.

The following equations define the the peak polynomials recursively if their peak sets are
of the appropriate form.

Corollary 4.8. If S = {i1 < · · · < is < is + 3} is admissible, then

p(S;n+ 1) =
(n+ 1)(n− (is − 2))

(n− is)(n− (is + 3))
p(S;n).

Proof. The constant coefficients and intermediate terms cancel in p(s;n + 1)/p(s;n) using
Corollary 4.6.

Corollary 4.9. If S = {i1 < · · · < is < is + 3 < is + 5} is admissible, then

p(S;n+ 1) =
(n+ 1)(n− (is + 2))(n− (is + 4))(n− (is − 3))

(n− is)(n− (is + 3))(n− (is + 5))(n− (is − 2))
p(S;n).

Proof. The constant coefficients and intermediate terms cancel in p(s;n + 1)/p(s;n) using
Corollary 4.7.

5 Polynomials for specific peak sets

Theorem 5.1. If S = {m,m+ 3, . . . ,m+ 3k} with k ≥ 1, then

p(S;n) =
(m− 1)(n− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
i=0

(n− i).

Proof. We induct on k and use Theorem 1.3 and Lemma 4.4. If k = 1, then S = {m,m+3},
and we know from Theorem 1.3 that

p(m,m+ 3;n) = p1(m+ 2)

(
n

m+ 2

)
− p1(m+ 1)

(
n

m+ 1

)
=

[(
m+ 1

m− 1

)
− 1

](
n

m+ 2

)
−

[(
m

m− 1

)
− 1

](
n

m+ 1

)

=

[
(m− 1)(m+ 2)

2

](
n

m+ 2

)
−

[
2(m− 1)

2

](
n

m+ 1

)
=

(m− 1)(n− (m+ 3))

2(m+ 1)!

m∏
i=0

(n− i).
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In the inductive step we know p1(n) from the inductive hypothesis because S1 = {m,m +
3, . . . ,m+ 3(k − 1)}. Using Lemma 4.4, it follows that

p(S;n) = p1(m+ 3k − 1)

(
n

m+ 3k − 1

)
− p1(m+ 3k − 2)

(
n

m+ 3k − 2

)
=

m− 1

2(m+ 1)!(12k−2)

[
2(n− (m+ 3k − 2))

4!
− 1

3!

]
m+3(k−1)∏

i=0

(n− i)

=
(m− 1)(n− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
i=0

(n− i),

which is the desired result.

Theorem 5.2. If S = {m,m+ 3, . . . ,m+ 3k,m+ 3k + 2} with k ≥ 1, then

p(S;n) =
(m− 1)(n− (m+ 3k − 5))(n− (m+ 3k))(n− (m+ 3k + 2))

(m+ 1)!(12k)

m+3(k−1)∏
i=0

(n− i).

Proof. Using Corollary 1.2, we see that

p(S;n) = p1(m+ 3k + 1)

(
n

m+ 3k + 1

)
− 2p1(n)

because p2(n) is inadmissible. We know p1(n) from Theorem 5.1, so it follows that

p(S;n) =
(m− 1)(n− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
i=0

(n− i)
[

1

3!
(n− (3k − 1))(n− (3k − 2))− 2

]

=
(m− 1)(n− (m+ 3k − 5))(n− (m+ 3k))(n− (m+ 3k + 2))

(m+ 1)!(12k)

m+3(k−1)∏
i=0

(n− i).

6 Probabilistic enumeration

If S = {i1 < i2 < · · · < is} is an admissible peak set, then let Q(S;n) be the set of
permutations π ∈ Sn whose peak set contains S. In symbols,

Q(S;n) = {π ∈ Sn : S ⊆ P (π)}.

Now let us partition S into runs of alternating subsequences. An alternating subsequence of
a peak set is subset of S such that

Ar = {ir, ir + 2, . . . , ir + 2(k − 1)}

11



where ir − ir−1 > 2 if ir−1 ∈ S, and we call Ar an alternating subsequence because

πir−1 < πir > πir+1 < πir+2 > · · · < πir+2(k−1) > πir+2(k−1)+1

is an alternating permutation in S2k+1. Let A(S) be the function that partitions S into al-
ternating subsequences. For example, if S = {2, 4, 7, 9, 11, 15}, then A(S) = {A1, A3, A6} =
{{2, 4}, {7, 9, 11}, {15}}.

Theorem 6.1. If S is admissible, then

|Q(S;n)| = n!
∏

Ar∈A(S)

T2|Ar|+1

(2 |Ar|+ 1)!

where Tk is a tangent number.

Proof. Let S = {i1 < i2 < · · · < is}, Ar = {ir, ir + 2, . . . , ir + 2(k − 1)} be the alternating
subsequence in A(S) containing ir, and π be a random permutation in Sn. Clearly Ar ⊆
P (π) if and only if πir−1 < πir > πir+1 < πir+2 > · · · < πir+2(k−1) > πir+2(k−1)+1, so
the probability that Ar ⊆ P (π) depends only on these 2k + 1 values of π. There are T2k+1

alternating permutations in S2k+1, so the probability that 2k+1 elements form an alternating
permutation is T2k+1/(2k + 1)!.

Now we will look at a different alternating subsequence in A(S), so let Ar′ = {ir′ , ir′ +
2, . . . , ir′ + 2(k′ − 1)}. By an earlier argument, we know the probability that Ar′ ⊆ P (π)
depends only on the consecutive 2k′+1 different values of π, and we know that this probability
is T2k′+1/(2k

′ + 1)!. Moreover, we see that these probabilities are independent because
{πir−1, πir , . . . , πir+2(k−1)+1} ∩ {πir′−1, πir′ , . . . , πir′+2(k′−1)+1} = ∅, which we know from the
definition of alternating subsequences.

It follows that the probability that S ⊆ P (π) is equal to the product of the individual
probabilities that P (π) contains the different alternating subsequences because they are
independent, and so we see that |Q(S;n)| is the expected value of the probability that
S ⊆ P (π), which completes the proof.

It’s worth noting that if an alternating subsequence has k peaks, then the probability
that its associated permutation in S2k+1 is an alternating permutation is the kth zero-based
coefficient of the Maclaurin series of tan(x). Consequently, we use tangent numbers. For
example, the probability that a random permutation has peaks at i and i+2 is 2/15 (assuming
that it is admissible), and we see that

tan(x) = x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 · · · .

Corollary 6.2. If S is admissible, then

|P(S;n)| =
∑
T⊇S

(−1)|T−S||Q(T ;n)|.

12



Proof. This is a direct consequence of Theorem 6.1 and the Principle of Inclusion and Ex-
clusion.

Corollary 6.3. If S = {i1 < · · · < is} is admissible and
∑

Ar∈A(S) 2|Ar|+ 1 = is + 1, then

|P(S; is + 1)| = (is + 1)!
∏

Ar∈A(S)

T2|Ar|+1

(2|Ar|+ 1)!
.

Proof. We use Corollary 6.2 above and observe that S is the only admissible superset of
S.

*Discuss why the gap of three is so special.*

7 Conjectures

Conjecture 7.1. If S = {2, 5, . . . , 2 + 3k} for some k ≥ 0, then S is the most frequent peak
set in S3(k+1).

We know that the number permutations with this peak set is (3(k + 1))!/3k−1 by Corol-
lary 6.3.

Conjecture 7.2. If S = {i1 < i2 < · · · < is} is admissible, then the real part of every root
of p(S;n) is less than or equal to is.

Conjecture 7.3. If S = {i1 < i2 < · · · < is} is admissible and all of the roots of p(S;n)
are real, then all of the roots of p(S;n) are integral. Furthermore, this only occurs when
S = {2}, S = {2, 4}, S = {3}, S = {3, 5}, S = {i1 < i2 < · · · < is < is + 3}, or
S = {i1 < i2 < · · · < is < is + 3 < is + 5}.

Conjecture 7.4. If S = {m}, then the roots of p(S;n) lay on the boundary of a football-
shaped curve in the complex plane. Furthermore, 0 and m are the only real roots if m is
odd, and m is the only real root if m is even.

S = {25} S = {50} S = {75}

13



From Theorem 1.3 we know that if S = {m}, then p(S;n) =
(
n−1
m−1

)
− 1. When looking

at the complex roots of this polynomial, it makes sense to let n = z, where z is a complex
variable. It follows that the values of z that we are seeking satisfy

Γ(z)

Γ(m)Γ(z −m+ 1)
− 1 = 0,

and furthermore
Γ(z) = Γ(z −m+ 1)m!.

Conjecture 7.5. *Only complex roots may fall in the final gap?
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